

 Navigation

 	
 index

 	
 next |

 	drunken boat 0.0.1 documentation

Drunken Boat

[image: https://coveralls.io/repos/boblefrag/drunken_boat/badge.svg?branch=master]
 [https://coveralls.io/r/boblefrag/drunken_boat?branch=master][image: https://travis-ci.org/boblefrag/drunken_boat.svg?branch=master]
 [https://travis-ci.org/boblefrag/drunken_boat][image: https://readthedocs.org/projects/drunken-boat/badge/?version=stable]
 [https://readthedocs.org/projects/drunken-boat/?badge=stable]Drunken boat is a performance based webframework under heavy active
developpment. It support python2.x and python3.x

It offer Routing, View management and a projection based ORM, schema
less and eventualy agnostic.

The ORM is inspired by the POMM project: http://www.pomm-project.org/
by Grégoire HUBERT (https://github.com/chanmix51/Pomm) Many thanks for
his thoughts

A simple Hello World

first, install drunken-boat see http://drunken_boat.readthedocs.org/en/stable/install.html. Once drunken_boat
installed you can boostrap your first application with:

drunken_run.py bootstrap example_blog

This will create for you all you need to start:

cd /home/yohann/Dev/drunken_boat/example_blog
python application.py

then visit http://localhost:5000/

Project Layout

drunken_run.py bootstrap example_blog create a new example_blog
directory with base file structure to start working:

example_blog/
 -- __init__.py
 -- application.py
 -- router.py
 -- views.py
 -- projection.py
 -- config.py

content of application.py:

from drunken_boat import Application
from example_blog.router import MainRouter

app = Application(
 MainRouter("/")
)

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

application only need an Application instance with a Router
responsible for routing the incomming requests.

content of router.py:

from drunken_boat.router import Router
from example_blog.views import MainView

class MainRouter(Router):
 view = MainView

a router can be as simple as this one but obviously you can add more
endpoints using Router.patterns. Router can take a View
attribute to compute the Response to return

content of view.py:

from drunken_boat.views import View
from werkzeug.wrappers import Response

class MainView(View):
 def get(self, request, **kwargs):
 response = Response('Hello World!', mimetype='text/plain')
 return response

Every request on “/” will return a “Hello World!” a lot more can be
done in View check the documentation on how to manage much more with
MiddleWare, Projection for database access and else.

Continue reading Models: database management the easy way

See http://drunken_boat.readthedocs.org/ for full documentation

Contents:

	Install

	ORM
	Models: database management the easy way
	Initialize

	Manipulation of Model objects

	How things works

	Returning

	Database Management
	Configuration & Table creation

	Projections

	Where
	Multiple Where

	Insert

	Returning

	Update

	Delete

	Relations
	Foreignkey

	ReverseForeignkey

	Filter reverse foreignkey

	Many To Many

	ORM Philosophy

	Models: database management the easy way
	Initialize

	Manipulation of Model objects

	How things works

	Returning

	Database Management
	Configuration & Table creation

	Projections

	Where
	Multiple Where

	Insert

	Returning

	Update

	Delete

	Relations
	Foreignkey

	ReverseForeignkey

	Filter reverse foreignkey

	Many To Many

	Tutorial
	The inevitable blog example

	Contributing
	Contributing
	Create tickets

	Use topic branches

	Fork, clone

	Usual actions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

Install

Due to the active developpment of the project, no pakages have been
uploaded to pip. However you can git pull the main repository:

git clone https://github.com/boblefrag/drunken_boat

Then cd to drunken_boat directory:

cd drunken_boat

And install with:

python setup.py install

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

ORM

	Models: database management the easy way
	Initialize

	Manipulation of Model objects

	How things works

	Returning

	Database Management
	Configuration & Table creation

	Projections

	Where

	Insert

	Returning

	Update

	Delete

	Relations
	Foreignkey

	ReverseForeignkey

	Filter reverse foreignkey

	Many To Many

ORM Philosophy

It’s common in the ORM world to write your tables schema in your
python code. This cause majors issues.

First of the is duplication. Your schema is in your database AND in
your python code. Every time one chage, the other has to change.

Second is static schema. Database are not bound to a schema, they are
bound to projections. Here is an example, let say you have this
database schema:

Table bookstore_store:

id | integer | not NULL default, nextval('bookstore_store_id_seq'::regclass)
name | character varying(250) | not NULL
close_time | integer | not NULL
open_time | integer | not NULL
open_date | date | not NULL
location_id | integer | not NULL

Table bookstore_location:

id | integer | not NULL default, nextval('bookstore_location_id_seq'::regclass)
name | character varying(250) | non NULL

a store object will always have the representation

Store:
 id
 name
 close_time
 open_time
 open_date
 location_id

Let say you only need the name and the location name you will
write something like:

for store in stores:
 store.name
 store.location.name # Your ORM without telling you anything
 # will make a query on location for each
 # store

In Django for example, you will need to specify a select_related
argument to your query to retreive location.name when querying the
store table. You can’t get only the store.name and the location.name
without loosing the objects paradigm (or using the “only” parameter
wich will not raise anything but make a query for each field you forget)

Because database can manage this in an admirable manner, and much
more, we decide to create a schemaless ORM without breaking the Object
Oriented paradigm. Seems interesting? Let’s take the ride!

Models: database management the easy way

Basicaly Models are simply a thin layer on top of Projections see
database for a full documentation on Projections. With
models, on can easily create, update and delete database objects using
a clear syntax.

Of course you also get all the power of Projections when you need them.

Initialize

To create a model, you need at least a Database and a Projection
A basic projection can be something like:

from drunken_boat.db.postgresql.projections import Projection

class ExampleProjection(Projection):
 """
 A basic projection
 """
 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthday = Timestamp()

 class Meta:
 table = "test"

The underlying database table can be something like:

Table : test

 id serial PRIMARY KEY,
 num integer NOT NULL,
 data varchar NOT NULL,
 birthday timestamp

you can now import your database configuration:

from example_blog.config import DATABASE
from drunken_boat.db.postgresql import DB

db = DB(**DATABASE)

You are now ready to use the Models API:

from drunken_boat.db.postgresql.models import Model
my_model = Model(db, projections={"example": ExampleProjection})

Manipulation of Model objects

With a Model instance, you can request an object for creating data
in your database in a very pythonic way. To requert an object, just
do:

obj = model.object()

Then you can set data on this object:

obj.num = 10
obj.data = "something"

And, of course save this object in the database:

obj.save()

Once saved, the object can be updated:

obj.num = 25
obj.update()

Or deleted:

obj.delete()

How things works

Models are nothing more than just a very thin layer around
Projections and database objets. When you create a Model with some
projections, we will look for a “default” projection. If this
projection does not exist, the first projection will be set as the
“default” one.

In order to implement update and delete on model object, we look for
the primary key on the “default” projection. If the primary key is not
on the projection, it will be automaticaly added when you call the
save() method of object.

After that, because we get the primary key of your object we are able
to update and delete the object using this pimary key.

All the projections you a model contains are available in
Model.projections. For example, to get the default projection you just
have to write:

my_model.projections.default

If you do not want to use the default projection when requestiong a
Model object, you can ask for a particular projection:

obj = my_model.object(projection=my_model.projections.other)

Using a projection you do not define in your model is absolutly ok
because there is no magic in how Model work:

obj = my_model.object(projection=AnOtherProjection)

The only limit is that your projection must be on the same
table. (same primary key field)

Returning

Because underlying projections offers returning on insert, update and
delete, Model objects offer this behavior too. Simply add the
returning argument to your save, update or delete method just like
with projections:

obj.save(returning="title")

Database Management

Drunken Boat is focused on performances. Most of current applications
lack performances due to ORM. Yes ORM are great when you need Object
Oriented programation but they lack a lot of features you can find in
modern database like PostgreSQL.

Drunken Boat want to help you write powerful applications where you
can use the most of your database and still use Object Oriented programmation.

This is the reason why Drunken Boat does not force you to create your
database nor managing table schema in his ORM. Sure it gives you some
helpful methods and functions to create database, schema, make ALTER
TABLE on your databases but it’s absolutely up to you to manage them
the way you like.

Configuration & Table creation

In the project created by drunken_run.py the file config.py contains
the base detail of a database connection. Change the DATABASE with
connection informations of your database.

Even if drunken_boat don’t force you to create table from python, for
this tutorial you can use this simple script to generate the table you
will use in the next step:

#projection.py
from drunken_boat.db.postgresql import DB
from example_blog.config import DATABASE

def create_tables():
 db = DB(**DATABASE)
 cur = db.cursor()
 cur.execute(
 """select exists(
 select * from information_schema.tables where table_name=%s)
 """,
 ('test',))
 if not cur.fetchone()[0]:
 cur.execute("""CREATE TABLE test (
 id serial PRIMARY KEY,
 num integer,
 data varchar,
 birthday timestamp)""");
 db.conn.commit()
 print("table created")
 return
 print("table already exists")

Projections

Projections are the object based representation of the result of a
database query. See them as what you expect from the database.

Let say you make this query:

select name, age(birthdate) from user;

the corresponding projection will just fit:

class UserNameAge(Projection):

 name = CharField()
 age = Timestamp(name="age(birthdate)")

 class Meta:
 table = "user"

projection = UserNameAge(DB(**connection_params))

And you can get your results as easily as:

>> users = projection.select()
>> users[0].age
datetime.timedelta(13850, 50160)

results are list of DataBaseObject. because DataBaseObject are
objects, you can attach any method you want on it. For example:

from drunken_boat.db.postgresql import DB
from config import DATABASE
from drunken_boat.db.postgresql.fields import Timestamp
from drunken_boat.db.postgresql.projections import (Projection,
 DataBaseObject)
class ExampleDataBaseObject(DataBaseObject):

 def display_birthyear_and_days(self):
 days = self.age.days
 year = self.birthdate.year
 return "{} days since {}".format(days, year)

class ExampleProjection(Projection):
 """
 Here you can write your real projections
 """

 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthdate = Timestamp()

 class Meta:
 table = "test"
 database_object = ExampleDataBaseObject

example_projection = ExampleProjection(DB(**DATABASE))

>>> from projections import example_projection
>>> t = example_projection.select()
>>> t[0].display_birthyear_and_days()
'13850 days since 1977'

Where

One thing you will surely do very often is to use Projection with
WHERE clause. Where clause are defined with 2 sides. First side is the
clause and the comparison operator, the other side is the parameter.

For example, in the statement:

WHERE id > 4;

id is the clause, > is the comparison operator, and 4 is the parameter.

The first an easier way to make a query with a WHERE clause is simply
adding where and parameter to the select statement:

>>> projection.select(where='id=%s', params=(1,))

If it’s perfectly ok to do so, but sometimes you will need to store a
WHERE clause to use it in many places in your code. For this the Where
object is here to help you.

A where object take a clause, an operator and a value:

from drunken_boat.db.postgresql.query import Where
where = Where("id", "=", "%s")

As you can see a Where object is very similar to the select
version. The difference is that you do not define a parameter yet. The
parameter will be define when calling the select method of your
Projection:

>>> projection.select(where=where, params=(1,))

Multiple Where

It’s also possible to use multiple where in a single select using
biwise operations. AND, OR and NOT are supported:

AND:

>>> where = Where("id", "=", "%s") & Where("title", "=", "%s")

OR:

>>> where = Where("id", "=", "%s") | Where("title", "=", "%s")

NOT:

>>> where = Where("id", "=", "%s") & ~Where("title", "=", "%s")

NOT can be used as is to make exclude clause:

>>> where = ~Where("title", "=", "%s")

You can also define priorities with parenthesis:

>>> where = Where("id", "=", "%s") | (Where("title", "=", "%s") & Where("intro", "=", "%s"))

this will be rendered as:

id = %s OR (title = %s AND intro = %s)

Insert

Even if you do not describe the table schema of your tables,
drunken_boat introspect your table schema to give you automatic
validation of data before even hitting the database.

To demonstrate this behavior let’s create another table:

Table : test

 id serial PRIMARY KEY,
 num integer NOT NULL,
 data varchar NOT NULL,
 birthday timestamp

And another projection:

class ExampleProjection(Projection):
 """
 Here you can write your real projections
 """
 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthday = Timestamp()

 class Meta:
 table = "test"
 database_object = ExampleDataBaseObject

example_projection = ExampleProjection(DB(**DATABASE))

Now, with a shell try to insert some data in the table:

>>> from projections import example_projection
>>> example_projection.insert({"birthday": datetime.datetime.now()})
ValueError: num of type integer is required
data of type character varying is required

Now that you know wich data you must use to insert data you can type:

>>> example_projection.insert({"num": 10,
... "data": "some data"})

You can check that your record is saved in the database:

>>> example_projection.select()
... [<projections.DataBaseObject at 0x7f2ac0447c10>]

Returning

You can feel a bit disturbing to do not have a hint on what’s the
result of your insert. If you want to get results, you can use
returning parameter to get a result from the database:

>>> example_projection.insert({"num": 10,
... "data": "some data"},
... returning="id, num, data")
(6, 10, 'some data')

Last but not least, you can even ask drunken_boat to return the object
corresponding to the projection you actually use:

>>> import datetime
>>> obj = example_projection.insert(
... {"data": "hello",
... "num": "6",
... "birthday": datetime.datetime.now()},
... returning="self")
>>> obj.age
datetime.timedelta(-1, 33857, 32595)
>>> obj.birthday
datetime.datetime(2015, 5, 1, 14, 35, 42, 967405)

Update

Updating is similar o insert but the main difference is that when you
commonly insert a single row, when you update a table, you can update
a lot of rows in a single query on the database.

To reflect this, the syntax of update is where clause, updated column
and parameters for the where. For example, if you want to change all
the example_projection object where data is “hello” to goodbye, you
will write:

>>> example_projection.update("data=%s", {"data": "goodbye"}, ("hello",))

obviously you can use a Where object to make things more readable:

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",))

Last bt not least, like with insert you can ask the database for
returning:

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",), returning="id, num, data")

or

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",), returning="self")

Delete

With delete, you do not need to specify what will be changed. So the
api of delete is like update but without changing columns:

>>> example_projection.delete(Where("data", "=" "%s"),("hello",))

Like for update and insert you can use returning on delete:

>>> example_projection.delete(Where("data", "=" "%s"),("hello",),
... returning="self")

Relations

Foreignkey

When you need to manage relation between objects (ForeignKey), you
will need a way to tell the Database wich fields of the related table
you want to retreive. You will also need to tell the database how to
handle the relation. Of course with projections it’s really easy to
do.

Of course you need to create the tables in your database. For this
purpose you can use something like this:

db = DB(**DATABASE)
cur = db.cursor()
cur.execute(
"""CREATE TABLE author (id serial PRIMARY KEY,
 first_name = varchar(250) NOT NULL,
 last_name = varchar(250) NOT NULL)
""")
db.conn.commit()
cur.execute(
"""CREATE TABLE blog_post (id serial PRIMARY KEY,
 title varchar(250),
 introduction text,
 body text,
 created_at timestamp default now(),
 last_edited_at default now(),
 author_id integer NOT NULL,
 published boolean default False)
""")
db.conn.commit()
cur.execute(
"alter table blog_post add foreign key(author_id)
references author"
)
db.conn.commit()

Then you can create two new projections:

class AuthorProjection(Projection):
 first_name = CharField()
 last_name = CharField()
 birthdate = Timestamp()

 class Meta:
 table = "author"

author_projection = AuthorProjection(DB(**DATABASE))

class PostProjection(Projection):
 title = CharField()
 introduction = Text()
 body = Text()
 created_at = Timestamp()
 last_edited_at = Timestamp()
 author = ForeignKey(join=["author_id", "id"],
 projection=AuthorProjection)
 published = Boolean()

 class Meta:
 table = "blog_post"

post_projection = PostProjection(DB(**DATABASE))

ForeignKey take two mandatory parameters, join and projection.

	
	join: This is a list of 2 elements. First element is the field on

	the table you’re working on. Second element is the field on
the related table.

	projection:: The projection to use to render the field.

Usage of projections with foreignkeys are straitforward:

>>> from projections import post_projection
>>> post = post_projection.select()[0]
>>> post.__dict__
{'author': <drunken_boat.db.postgresql.projections.DataBaseObject at 0x7f7170187490>,
 'body': None,
 'created_at': datetime.datetime(2015, 5, 1, 17, 18, 20, 95226),
 'introduction': 'Pouet Pouet PimPim',
 'last_edited_at': datetime.datetime(2015, 5, 1, 17, 18, 20, 95226),
 'published': False,
 'title': 'hello'}
>>> post.author.__dict__
{'birthdate': None, 'first_name': 'Paul', 'last_name': 'Eluard'}

ReverseForeignkey

Another cas you will encounter a lot is when you want to reverse the
relation. In our example, this can be :

How to get the authors with their corresponding posts ?

To solve this case we have to retreive all the posts belonging to one
of the author and then dispatch the posts to the corresponding author
representation.

ReverseForeign is a type of Field created for this job.

It need to know the related column on the “from” side and the related
column on the “to” side. Exactly the opposite of ForeignKey.

In our example we want all the post with an author_id equal to the
author.id.

We also need to tell ReverseForeign wich Projection to use for
rendering the posts. Here is an example:

class PostProjectionRelated(Projection):
 title = CharField()
 introduction = Text()

 class Meta:
 table = "blog_post"

post_projection_related = PostProjectionRelated(DB(**DATABASE))

class AuthorProjectionWithPost(AuthorProjection):
 posts = ReverseForeign(join=["id", "author_id"],
 projection=PostProjectionRelated)

author_projection_with_post = AuthorProjectionWithPost(DB(**DATABASE))

author_projection_with_post.select() will return a list of Author
with the attribute posts containing all the posts of this author:

>>> for author in author_projection_with_post.select():
... print(author.id, [post.__dict__ for post in author.posts])
1, [],
2, [{"title": "a title", "introduction": "an introduction",
"author_id": 2}, {"title": "another title", "introduction": "another
introduction", "author_id":2] ...

If the first element of ReverseForeign.join is not in the projection,
(id in the example) it will be automaticaly added.

The same go for the ReverseForeign.projection wich will gain the
second part of ReverseForeign.join (author_id in the example).

This is the reason why we can get author.id even if id is not on the
AuthorProjectionWithPost.fields and post.author_id even if
author_id is not on PostProjectionRelated.fields

Filter reverse foreignkey

Sometimes getting the related objects is not enought and you will need
to filter the related objects.

To do so, drunken_boat offer a simple API. You only need to give to
the select method a related argument to hold every related fields
where and params:

>>> projection = author_projection_with_post.select(
... related={'posts':
... 'where': 'title=%s',
... 'params': ('a title')})
>>> print post.__dict__ for post in projection[1].posts]
[{"title": "a title", "introduction": "an introduction",
"author_id": 2}]

Many To Many

With ReverseForeign and ForeignKey you can already implement Many
to many relations. To do so, let say you have the following tables in
your database:

CREATE TABLE product (
 id serial PRIMARY KEY
, product text NOT NULL
, price numeric NOT NULL DEFAULT 0
);

CREATE TABLE bill (
 id serial PRIMARY KEY
, bill text NOT NULL
, billdate date NOT NULL DEFAULT now()::date
);

CREATE TABLE bill_product (
 bill_id int REFERENCES bill (bill_id) ON UPDATE CASCADE ON DELETE CASCADE
, product_id int REFERENCES product (product_id) ON UPDATE CASCADE
, amount numeric NOT NULL DEFAULT 1
, CONSTRAINT bill_product_pkey PRIMARY KEY (bill_id, product_id)
);

You can then create the following projections:

class Product(Projection):
 product = CharField()
 price = Integer()

 class Meta:
 table = "product"

product_projection = Product(DB(**DATABASE))

class BillProduct(Projection):
 product = ForeignKey(join=["product_id", "id"],
 projection=Product)
 class Meta:
 table = "bill_product"

productbill_projection = BillProduct(DB(**DATABASE))

class Bill(Projection):
 bill = CharField()
 billdate = Timestamp()
 products = ReverseForeign(join=["id", "bill_id"],
 projection=BillProduct)
 class Meta:
 table = "bill"

bill_projection = Bill(DB(**DATABASE))

With a select on bill_projection you will retreive all the
BillProduct matching your select. BillProduct will then retreive
the corresponding Product. This will give you the following results:

[
 {"bill": "<text>",
 "billdate": <a date>,
 "products": [
 {"product":
 {"product": <text>, "price": <a price>},
 {"product":
 {"product": <text>, "price": <a price>},
 ...
]
 ...
]

create a bill with product you need to create the corresponding
bill_product record. This can be done using Returning:

import datetime
bill = bill_projection.insert(
 {"bill": "a bill",
 "billdate": datetime.datetime.now()
 }, returning="id")

because we use returning, bill is the bill.id of the object just
saved

product = product_projection.insert(
 {"product": "screwdriver",
 "price": 10},
 returning="id"
)

productbill_projection.insert({"bill_id": bill, "product_id": product})

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

 	ORM

Models: database management the easy way

Basicaly Models are simply a thin layer on top of Projections see
Database Management for a full documentation on Projections. With
models, on can easily create, update and delete database objects using
a clear syntax.

Of course you also get all the power of Projections when you need them.

Initialize

To create a model, you need at least a Database and a Projection
A basic projection can be something like:

from drunken_boat.db.postgresql.projections import Projection

class ExampleProjection(Projection):
 """
 A basic projection
 """
 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthday = Timestamp()

 class Meta:
 table = "test"

The underlying database table can be something like:

Table : test

 id serial PRIMARY KEY,
 num integer NOT NULL,
 data varchar NOT NULL,
 birthday timestamp

you can now import your database configuration:

from example_blog.config import DATABASE
from drunken_boat.db.postgresql import DB

db = DB(**DATABASE)

You are now ready to use the Models API:

from drunken_boat.db.postgresql.models import Model
my_model = Model(db, projections={"example": ExampleProjection})

Manipulation of Model objects

With a Model instance, you can request an object for creating data
in your database in a very pythonic way. To requert an object, just
do:

obj = model.object()

Then you can set data on this object:

obj.num = 10
obj.data = "something"

And, of course save this object in the database:

obj.save()

Once saved, the object can be updated:

obj.num = 25
obj.update()

Or deleted:

obj.delete()

How things works

Models are nothing more than just a very thin layer around
Projections and database objets. When you create a Model with some
projections, we will look for a “default” projection. If this
projection does not exist, the first projection will be set as the
“default” one.

In order to implement update and delete on model object, we look for
the primary key on the “default” projection. If the primary key is not
on the projection, it will be automaticaly added when you call the
save() method of object.

After that, because we get the primary key of your object we are able
to update and delete the object using this pimary key.

All the projections you a model contains are available in
Model.projections. For example, to get the default projection you just
have to write:

my_model.projections.default

If you do not want to use the default projection when requestiong a
Model object, you can ask for a particular projection:

obj = my_model.object(projection=my_model.projections.other)

Using a projection you do not define in your model is absolutly ok
because there is no magic in how Model work:

obj = my_model.object(projection=AnOtherProjection)

The only limit is that your projection must be on the same
table. (same primary key field)

Returning

Because underlying projections offers returning on insert, update and
delete, Model objects offer this behavior too. Simply add the
returning argument to your save, update or delete method just like
with projections:

obj.save(returning="title")

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

 	ORM

Database Management

Drunken Boat is focused on performances. Most of current applications
lack performances due to ORM. Yes ORM are great when you need Object
Oriented programation but they lack a lot of features you can find in
modern database like PostgreSQL.

Drunken Boat want to help you write powerful applications where you
can use the most of your database and still use Object Oriented programmation.

This is the reason why Drunken Boat does not force you to create your
database nor managing table schema in his ORM. Sure it gives you some
helpful methods and functions to create database, schema, make ALTER
TABLE on your databases but it’s absolutely up to you to manage them
the way you like.

Configuration & Table creation

In the project created by drunken_run.py the file config.py contains
the base detail of a database connection. Change the DATABASE with
connection informations of your database.

Even if drunken_boat don’t force you to create table from python, for
this tutorial you can use this simple script to generate the table you
will use in the next step:

#projection.py
from drunken_boat.db.postgresql import DB
from example_blog.config import DATABASE

def create_tables():
 db = DB(**DATABASE)
 cur = db.cursor()
 cur.execute(
 """select exists(
 select * from information_schema.tables where table_name=%s)
 """,
 ('test',))
 if not cur.fetchone()[0]:
 cur.execute("""CREATE TABLE test (
 id serial PRIMARY KEY,
 num integer,
 data varchar,
 birthday timestamp)""");
 db.conn.commit()
 print("table created")
 return
 print("table already exists")

Projections

Projections are the object based representation of the result of a
database query. See them as what you expect from the database.

Let say you make this query:

select name, age(birthdate) from user;

the corresponding projection will just fit:

class UserNameAge(Projection):

 name = CharField()
 age = Timestamp(name="age(birthdate)")

 class Meta:
 table = "user"

projection = UserNameAge(DB(**connection_params))

And you can get your results as easily as:

>> users = projection.select()
>> users[0].age
datetime.timedelta(13850, 50160)

results are list of DataBaseObject. because DataBaseObject are
objects, you can attach any method you want on it. For example:

from drunken_boat.db.postgresql import DB
from config import DATABASE
from drunken_boat.db.postgresql.fields import Timestamp
from drunken_boat.db.postgresql.projections import (Projection,
 DataBaseObject)
class ExampleDataBaseObject(DataBaseObject):

 def display_birthyear_and_days(self):
 days = self.age.days
 year = self.birthdate.year
 return "{} days since {}".format(days, year)

class ExampleProjection(Projection):
 """
 Here you can write your real projections
 """

 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthdate = Timestamp()

 class Meta:
 table = "test"
 database_object = ExampleDataBaseObject

example_projection = ExampleProjection(DB(**DATABASE))

>>> from projections import example_projection
>>> t = example_projection.select()
>>> t[0].display_birthyear_and_days()
'13850 days since 1977'

Where

One thing you will surely do very often is to use Projection with
WHERE clause. Where clause are defined with 2 sides. First side is the
clause and the comparison operator, the other side is the parameter.

For example, in the statement:

WHERE id > 4;

id is the clause, > is the comparison operator, and 4 is the parameter.

The first an easier way to make a query with a WHERE clause is simply
adding where and parameter to the select statement:

>>> projection.select(where='id=%s', params=(1,))

If it’s perfectly ok to do so, but sometimes you will need to store a
WHERE clause to use it in many places in your code. For this the Where
object is here to help you.

A where object take a clause, an operator and a value:

from drunken_boat.db.postgresql.query import Where
where = Where("id", "=", "%s")

As you can see a Where object is very similar to the select
version. The difference is that you do not define a parameter yet. The
parameter will be define when calling the select method of your
Projection:

>>> projection.select(where=where, params=(1,))

Multiple Where

It’s also possible to use multiple where in a single select using
biwise operations. AND, OR and NOT are supported:

AND:

>>> where = Where("id", "=", "%s") & Where("title", "=", "%s")

OR:

>>> where = Where("id", "=", "%s") | Where("title", "=", "%s")

NOT:

>>> where = Where("id", "=", "%s") & ~Where("title", "=", "%s")

NOT can be used as is to make exclude clause:

>>> where = ~Where("title", "=", "%s")

You can also define priorities with parenthesis:

>>> where = Where("id", "=", "%s") | (Where("title", "=", "%s") & Where("intro", "=", "%s"))

this will be rendered as:

id = %s OR (title = %s AND intro = %s)

Insert

Even if you do not describe the table schema of your tables,
drunken_boat introspect your table schema to give you automatic
validation of data before even hitting the database.

To demonstrate this behavior let’s create another table:

Table : test

 id serial PRIMARY KEY,
 num integer NOT NULL,
 data varchar NOT NULL,
 birthday timestamp

And another projection:

class ExampleProjection(Projection):
 """
 Here you can write your real projections
 """
 age = Timestamp(db_name="age(birthday)", virtual=True)
 birthday = Timestamp()

 class Meta:
 table = "test"
 database_object = ExampleDataBaseObject

example_projection = ExampleProjection(DB(**DATABASE))

Now, with a shell try to insert some data in the table:

>>> from projections import example_projection
>>> example_projection.insert({"birthday": datetime.datetime.now()})
ValueError: num of type integer is required
data of type character varying is required

Now that you know wich data you must use to insert data you can type:

>>> example_projection.insert({"num": 10,
... "data": "some data"})

You can check that your record is saved in the database:

>>> example_projection.select()
... [<projections.DataBaseObject at 0x7f2ac0447c10>]

Returning

You can feel a bit disturbing to do not have a hint on what’s the
result of your insert. If you want to get results, you can use
returning parameter to get a result from the database:

>>> example_projection.insert({"num": 10,
... "data": "some data"},
... returning="id, num, data")
(6, 10, 'some data')

Last but not least, you can even ask drunken_boat to return the object
corresponding to the projection you actually use:

>>> import datetime
>>> obj = example_projection.insert(
... {"data": "hello",
... "num": "6",
... "birthday": datetime.datetime.now()},
... returning="self")
>>> obj.age
datetime.timedelta(-1, 33857, 32595)
>>> obj.birthday
datetime.datetime(2015, 5, 1, 14, 35, 42, 967405)

Update

Updating is similar o insert but the main difference is that when you
commonly insert a single row, when you update a table, you can update
a lot of rows in a single query on the database.

To reflect this, the syntax of update is where clause, updated column
and parameters for the where. For example, if you want to change all
the example_projection object where data is “hello” to goodbye, you
will write:

>>> example_projection.update("data=%s", {"data": "goodbye"}, ("hello",))

obviously you can use a Where object to make things more readable:

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",))

Last bt not least, like with insert you can ask the database for
returning:

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",), returning="id, num, data")

or

>>> example_projection.update(Where("data", "=" "%s"),
... {"data": "goodbye"}, ("hello",), returning="self")

Delete

With delete, you do not need to specify what will be changed. So the
api of delete is like update but without changing columns:

>>> example_projection.delete(Where("data", "=" "%s"),("hello",))

Like for update and insert you can use returning on delete:

>>> example_projection.delete(Where("data", "=" "%s"),("hello",),
... returning="self")

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

 	ORM

Relations

Foreignkey

When you need to manage relation between objects (ForeignKey), you
will need a way to tell the Database wich fields of the related table
you want to retreive. You will also need to tell the database how to
handle the relation. Of course with projections it’s really easy to
do.

Of course you need to create the tables in your database. For this
purpose you can use something like this:

db = DB(**DATABASE)
cur = db.cursor()
cur.execute(
"""CREATE TABLE author (id serial PRIMARY KEY,
 first_name = varchar(250) NOT NULL,
 last_name = varchar(250) NOT NULL)
""")
db.conn.commit()
cur.execute(
"""CREATE TABLE blog_post (id serial PRIMARY KEY,
 title varchar(250),
 introduction text,
 body text,
 created_at timestamp default now(),
 last_edited_at default now(),
 author_id integer NOT NULL,
 published boolean default False)
""")
db.conn.commit()
cur.execute(
"alter table blog_post add foreign key(author_id)
references author"
)
db.conn.commit()

Then you can create two new projections:

class AuthorProjection(Projection):
 first_name = CharField()
 last_name = CharField()
 birthdate = Timestamp()

 class Meta:
 table = "author"

author_projection = AuthorProjection(DB(**DATABASE))

class PostProjection(Projection):
 title = CharField()
 introduction = Text()
 body = Text()
 created_at = Timestamp()
 last_edited_at = Timestamp()
 author = ForeignKey(join=["author_id", "id"],
 projection=AuthorProjection)
 published = Boolean()

 class Meta:
 table = "blog_post"

post_projection = PostProjection(DB(**DATABASE))

ForeignKey take two mandatory parameters, join and projection.

	
	join: This is a list of 2 elements. First element is the field on

	the table you’re working on. Second element is the field on
the related table.

	projection:: The projection to use to render the field.

Usage of projections with foreignkeys are straitforward:

>>> from projections import post_projection
>>> post = post_projection.select()[0]
>>> post.__dict__
{'author': <drunken_boat.db.postgresql.projections.DataBaseObject at 0x7f7170187490>,
 'body': None,
 'created_at': datetime.datetime(2015, 5, 1, 17, 18, 20, 95226),
 'introduction': 'Pouet Pouet PimPim',
 'last_edited_at': datetime.datetime(2015, 5, 1, 17, 18, 20, 95226),
 'published': False,
 'title': 'hello'}
>>> post.author.__dict__
{'birthdate': None, 'first_name': 'Paul', 'last_name': 'Eluard'}

ReverseForeignkey

Another cas you will encounter a lot is when you want to reverse the
relation. In our example, this can be :

How to get the authors with their corresponding posts ?

To solve this case we have to retreive all the posts belonging to one
of the author and then dispatch the posts to the corresponding author
representation.

ReverseForeign is a type of Field created for this job.

It need to know the related column on the “from” side and the related
column on the “to” side. Exactly the opposite of ForeignKey.

In our example we want all the post with an author_id equal to the
author.id.

We also need to tell ReverseForeign wich Projection to use for
rendering the posts. Here is an example:

class PostProjectionRelated(Projection):
 title = CharField()
 introduction = Text()

 class Meta:
 table = "blog_post"

post_projection_related = PostProjectionRelated(DB(**DATABASE))

class AuthorProjectionWithPost(AuthorProjection):
 posts = ReverseForeign(join=["id", "author_id"],
 projection=PostProjectionRelated)

author_projection_with_post = AuthorProjectionWithPost(DB(**DATABASE))

author_projection_with_post.select() will return a list of Author
with the attribute posts containing all the posts of this author:

>>> for author in author_projection_with_post.select():
... print(author.id, [post.__dict__ for post in author.posts])
1, [],
2, [{"title": "a title", "introduction": "an introduction",
"author_id": 2}, {"title": "another title", "introduction": "another
introduction", "author_id":2] ...

If the first element of ReverseForeign.join is not in the projection,
(id in the example) it will be automaticaly added.

The same go for the ReverseForeign.projection wich will gain the
second part of ReverseForeign.join (author_id in the example).

This is the reason why we can get author.id even if id is not on the
AuthorProjectionWithPost.fields and post.author_id even if
author_id is not on PostProjectionRelated.fields

Filter reverse foreignkey

Sometimes getting the related objects is not enought and you will need
to filter the related objects.

To do so, drunken_boat offer a simple API. You only need to give to
the select method a related argument to hold every related fields
where and params:

>>> projection = author_projection_with_post.select(
... related={'posts':
... 'where': 'title=%s',
... 'params': ('a title')})
>>> print post.__dict__ for post in projection[1].posts]
[{"title": "a title", "introduction": "an introduction",
"author_id": 2}]

Many To Many

With ReverseForeign and ForeignKey you can already implement Many
to many relations. To do so, let say you have the following tables in
your database:

CREATE TABLE product (
 id serial PRIMARY KEY
, product text NOT NULL
, price numeric NOT NULL DEFAULT 0
);

CREATE TABLE bill (
 id serial PRIMARY KEY
, bill text NOT NULL
, billdate date NOT NULL DEFAULT now()::date
);

CREATE TABLE bill_product (
 bill_id int REFERENCES bill (bill_id) ON UPDATE CASCADE ON DELETE CASCADE
, product_id int REFERENCES product (product_id) ON UPDATE CASCADE
, amount numeric NOT NULL DEFAULT 1
, CONSTRAINT bill_product_pkey PRIMARY KEY (bill_id, product_id)
);

You can then create the following projections:

class Product(Projection):
 product = CharField()
 price = Integer()

 class Meta:
 table = "product"

product_projection = Product(DB(**DATABASE))

class BillProduct(Projection):
 product = ForeignKey(join=["product_id", "id"],
 projection=Product)
 class Meta:
 table = "bill_product"

productbill_projection = BillProduct(DB(**DATABASE))

class Bill(Projection):
 bill = CharField()
 billdate = Timestamp()
 products = ReverseForeign(join=["id", "bill_id"],
 projection=BillProduct)
 class Meta:
 table = "bill"

bill_projection = Bill(DB(**DATABASE))

With a select on bill_projection you will retreive all the
BillProduct matching your select. BillProduct will then retreive
the corresponding Product. This will give you the following results:

[
 {"bill": "<text>",
 "billdate": <a date>,
 "products": [
 {"product":
 {"product": <text>, "price": <a price>},
 {"product":
 {"product": <text>, "price": <a price>},
 ...
]
 ...
]

create a bill with product you need to create the corresponding
bill_product record. This can be done using Returning:

import datetime
bill = bill_projection.insert(
 {"bill": "a bill",
 "billdate": datetime.datetime.now()
 }, returning="id")

because we use returning, bill is the bill.id of the object just
saved

product = product_projection.insert(
 {"product": "screwdriver",
 "price": 10},
 returning="id"
)

productbill_projection.insert({"bill_id": bill, "product_id": product})

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	drunken boat 0.0.1 documentation

Tutorial

The inevitable blog example

First, install drunken-boat see Install. Once drunken_boat
installed you can boostrap your first application with:

drunken_run.py bootstrap example_blog

This will create for you all you need to start:

cd /home/yohann/Dev/drunken_boat/example_blog
python application.py

then visit http://localhost:5000/

If everything is fine you should see a bare “Hello World!” This it a
first victory but there is much more to do.

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	drunken boat 0.0.1 documentation

Contributing

Contributing

This document provides guidelines for people who want to contribute to the
drunken-boat project.

Create tickets

Please use drunken-boat bugtracker [https://github.com/boblefrag/drunken-boat/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Use topic branches

	Work in branches.

	Please never push in master directly.

	Prefix your branch with one the following keyword feature/ when
adding a new feature and fix/ when working on a fix.
You can also add the ticket ID corresponding to the issue to be explicit.

	If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/v2/Git-Branching-Rebasing] [2] or merge-based rebase [http://git-scm.com/book/en/v2/Git-Branching-Rebasing] [2], i.e. do not merge master.

Fork, clone

Clone drunken-boat repository (adapt to use your own fork):

git clone https://github.com/boblefrag/drunken_boat
cd drunken_boat

Usual actions

The setup.py is the reference card for usual actions in development
environment:

	Install development toolkit with python setup.py develop.

	Run tests with python setup.py test.

	Build documentation: python setup.py build_sphinx

	Release drunken_boat project with zest.releaser [https://pypi.python.org/pypi/zest.releaser/] [3]: fullrelease.

Notes & references

	[1]	https://github.com/boblefrag/drunken-boat/issues

	[2]	(1, 2) http://git-scm.com/book/en/v2/Git-Branching-Rebasing

	[3]	https://pypi.python.org/pypi/zest.releaser/

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	drunken boat 0.0.1 documentation

Index

 Copyright 2015, Yohann Gabory.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

_static/down.png

_static/plus.png

